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Abstract. We use an appropriate combination of moments of finite energy sum rules in QCD in order
to compute the Bq-meson decay constants fB and fBs . We perform the calculation using a two-loop
computation of the imaginary part of the pseudoscalar two point function in terms of the running bottom
quark mass. The results are stable against the so-called QCD duality threshold, and they are in agreement
with the estimates obtained from Borel transform QCD sum rules and lattice computations.

PACS. 12.38.Bx, 12.38.Lg

1 Introduction

Since the pioneering work of Shifman, Vainshtein and
Zacharov [1], Laplace sum rules have been successfully ap-
plied to calculate all sort of parameters of the hadronic
spectrum. The main advantage of this type of sum rules is
that a Borel transform applied to the correlation function
enhances the contribution of the low lying resonances of the
hadronic spectrum, of which the properties are to be de-
termined. On the other hand, it reinforces the convergence
of the QCD asymptotic calculation in the high energy do-
main. The price to pay with this method is the appearance
of the so-called Borel parameter which has to be fixed by
stability arguments. Other particular sum rules based on
Hilbert transforms, inverse moments, . . . , have also been
used to suitably deal with other particular problems.

In this note we introduce a method based on the posi-
tive moments of QCD finite energy sum rules. Traditionally,
this type of sum rules have the disadvantage of reducing
the contribution of the low energy part of the hadronic
spectrum, whereas they enhance the QCD high energy re-
gion. Although they are easy to handle, one needs to fix
a QCD duality threshold, where theoretical calculations
are accurate enough and at the same time the low energy
region admits a suitable hadronic parameterization. Nev-
ertheless, it is not always easy to fix the value of this duality
threshold in the sense that the results have to be indepen-
dent of this value. The method we propose is to combine
different moments of finite energy sum rules in order to
get a polynomial weight for the correlation function such
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that its contribution becomes negligible when integrated
from the continuous physical threshold up to the QCD du-
ality threshold. In this way, the low lying resonance region
is enhanced in the hadronic spectrum and, on the other
hand, the role of the QCD duality threshold becomes less
relevant on the final results. We will be more explicit on
this in the next section.

Here we use our method to evaluate the decay constants
of the lightest pseudoscalar bottom mesons (fB and fBs),
which parameterize the Bq-meson matrix elements of the
pseudoscalar current:

〈Ω| (Mb + mq) (qiγ5 b)(0) |Bq〉 = fBq M2
Bq

.

These decay constants have received recently a lot of
attention since they enter in hadronic matrix elements of
B–B mixing, and its accurate evaluation would facilitate a
better determination of the BB mixing factor from recent
experiments carried out in theB-factories.They also appear
in the leptonic B decay widths and its knowledge could
provide a good determination of the |Vqb| matrix element in
future experiments. Calculations of these decay constants
have been performed since the eighties, with results in the
range of fB = 160–210 MeV and fBs/fB = 1.09–1.22 from
Borel transform techniques [2,4–6]. Computations in lattice
QCD give also results in a wide range: fB = 161–218 MeV
and fBs/fB = 1.11–1.16 [8,9] (for a review and a collection
of the results, see [7]). As we see, in these ranges of values
there is still room for improvement.

The plan of this note is the following: in the next section
we briefly review the theoretical method proposed, in the
third section we discuss the theoretical and experimental
inputs used in the calculation and in the fourth one we
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present our results for the decay constants with a discussion
of the errors. We finish the paper giving the conclusions.

2 The method

The two point function relevant to our problem is

Π(s = q2) = i
∫

dx eiqx〈Ω|T (j5(x)j5(0)) |Ω〉 ,

where 〈Ω | is the physical vacuum and the current j5(x) is
the divergence of the axial-vector current:

j5(x) = (MQ + mq) : q(x) iγ5 Q(x) : .

MQ is the mass of the heavy quark Q(x) which will be
the bottom quark in our case, whereas mq stands for the
light quark mass, up, down or strange. In order to write
down the sum rules relevant to our calculation, we apply
Cauchy’s theorem to the two point correlation function
Π(s), weighted with a polynomial P (s) as indicated in
the following:

1
2πi

∮
Γ

siP (s)Π(s) ds = 0 (1)

(the power si, with i ≥ 0, is introducedhere for convenience,
as it will become apparent in the following).

The integration path Γ is extended along a circle of
radius |s| = s0, and along both sides of the physical cut
starting at the physical threshold sph., i.e. running in the
interval s ∈ [sph., s0]. Neither the polynomial P (s) nor
the power of the integration variable change the analytical
properties of Π(s), so that we obtain the following sum rule:

1
π

∫ s0

sph.

si P (s) Im Π(s) ds = − 1
2πi

∮
|s|=s0

si P (s) Π(s) ds .

(2)
On the left hand side of this equation,we enter the exper-

imental information of ImΠ(s), starting from the physical
threshold sph. up to the integration radius s0, whereas,
on the right hand side, we consider the asymptotic QCD
theoretical calculations to be plugged into the integration
contour of radius s0. Therefore, this radius makes the com-
promise where the contribution of the hadronic spectrum
can be approximated by the QCD calculation. This is our
QCD duality threshold that we referred to in the previ-
ous section.

The asymptotic expansion of QCD (ΠQCD(s)) can be
split in two parts, including the perturbative and non-
perturbative terms, as follows:

ΠQCD(s) = Πpert.(s) + Πnonpert.(s) . (3)

At this stage, we consider that Πpert.(s) is an analytic func-
tion of s, with a real cut starting at sQCD = (Mb + mq)

2;
therefore, we can use again the Cauchy’s theorem to con-
vert the integration of Πpert.(s) along the circle |s| = s0

into an integration of the corresponding absorptive part
along the QCD cut,

1
π

∫ s0

sph.

siP (s)Im Π(s) ds

=
1
π

∫ s0

(Mb+mq)2
siP (s)ImΠpert.(s) ds

− 1
2πi

∮
|s|=s0

siP (s)Πnonpert.(s) ds . (4)

On the right hand side of (4)we take for the perturbative
spectral function the exact two-loop QCD calculation [2]

1
π

ImΠpert.(s)

=
3

8π2 (Mb + mq)2s
(

1 − M2
b

s

)2

×
{

1 +
αs (µ)

π
2
3

[
4dilog

(
M2

b

s

)

+2 ln
(

M2
b

s

)
ln

(
1 − M2

b

s

)

−
(

5 − 2M2
b

s

)
ln

(
1 − M2

b

s

)

+
[(

1 − 2
M2

b

s

) (
3 − M2

b

s

)
ln

(
M2

b

s

)
+

17
2

− 33M2
b

2s

− 3
(

1 − 3M2
b

s

)
ln

(
M2

b

µ2

)] (
1 − M2

b

s

)−1
]}

, (5)

where Mb = Mb (µ) is the running mass of the b quark in
the MS scheme. It is known that the expansion in terms of
the running mass converges much faster, in a wide range
of the renormalization scale, than the one in terms of the
bottom pole mass, as noticed, for instance, in [4].

For the non-perturbative part Πnonpert.(s) we take the
contribution coming from the vacuum expectation values
of non-perturbative operators up to dimension six [2, 3]:

Πnonpert.(s)

=
M2

pole

s − M2
pole

[
Mpole〈qq〉 − 1

12
〈 αs

π
G2〉

]

− 1
2

M3
pole

[
1

(s − M2
pole)2

+
M2

pole

(s − M2
pole)3

]
〈qσGq〉

− 8
27

πM2
pole

×
[

2
(s − M2

pole)2
+

M2
pole

(s − M2
pole)3

− M4
pole

(s − M2
pole)4

]

×αs〈qq〉2 . (6)

The contour integration of the non-perturbative part
is easily done by means of the residue theorem.
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Again, for calculational purposes, we consider in this
non-perturbative expansion the relation between the pole
mass Mpole and the running mass Mb in the appropriate
order of the coupling constant [4, 11,12].

Finally, on the left hand side of (2), we parameterize
the absorptive part of the two point correlation function by
means of a narrow width approximation of the lightest Bq

resonance plus the hadronic continuum of the bq channel
starting at scont, above the resonance region:

1
π

ImΠ(s) (7)

= M4
Bq

f2
Bq

δ(s − M2
Bq

) +
1
π

ImΠcont.θ(s − scont.) ,

where MBq
and fBq

are respectively the mass and the decay
constants of the lowest lying pseudoscalar meson Bq.

Looking back to (2) and taking into account all the the-
oretical parameters as well as the mass of the Bq-meson as
our inputs in the calculation, we see that the decay constant
can be computed as far as we had a good control of the
hadronic continuum contribution of the experimental side.

Since this is not the case, to cope with this problem
we make an appropriate choice of the polynomial (P (s))
in that equation. We take

P (s) = a0 + a1s + a2s
2 + a3s

3 + . . . + ansn , (8)

such that its coefficients are fixed by imposing a normal-
ization condition at threshold P (sph. = M2

Bq
) = 1, and

requiring that that should vanish in the range [scont., s0]
in a least square sense, i.e.,∫ s0

scont.

sk P (s) ds = 0 for k = 0, . . . , n . (9)

These conditions exactly cancel the continuum contribu-
tion as far as Im Πcont. can be well approximated by an
nth degree polynomial. On the other hand, by virtue of the
normalization condition, it will enhance the role of the Bq

resonance. Notice however that by increasing the degree
of the polynomial, P (s), we will require the knowledge of
further terms in the non-perturbative series, which are un-
known. Therefore, a compromise criterion for the choice of
the polynomial degree has to be taken.

To check the consistency of the method in this work,
we have considered second and third degree polynomials
and the results are fully compatible within the range of the
errors introduced by the inputs of the calculation. We also
have checked explicitly that a smooth continuum contri-
bution has no influence in the result. This procedure was
previously used in the calculation of the charm mass from
the cc experimental data. The continuum data from the
BES II Collaboration [13] had no influence when an appro-
priate polynomial was included [14]. Employing the same
technique, a very accurate prediction of the bottom quark
mass was also obtained using the experimental information
of the upsilon system [15].

After these considerations we proceed with the ana-
lytical calculation of the decay constant fBq , neglecting

the contribution that comes from ImΠcont.. For different
powers of si we obtain different sum rules which, in prin-
ciple, should give the same result for the decay constant
fBq

. Notice however that, by increasing the value of i we
get larger contributions from both the large s region of the
spectral function and higher orders in the non-perturbative
QCD expansion1. Since these pieces have the main exper-
imental and theoretical uncertainties, we will consider the
calculation coming from the sum rules corresponding to
the powers with i = 0 and i = 1 which, in any case, is
enough for our purposes.

M4
Bq

f2
Bq

=
1
π

∫ s0

(Mb+mq)2
P (s)ImΠpert.(s) ds

−Res
{
P (s)Πnonpert.(s), s = M2

b

}
(10)

for i = 0 (“first sum rule”) and

M6
Bq

f2
Bq

=
1
π

∫ s0

(Mb+mq)2
sP (s)ImΠpert.(s)ds

−Res
{
s P (s) Πnonpert.(s), s = M2

b

}
(11)

for i = 1 (“second sum rule”). Let us emphasize that in
these two sum rules there are two unknowns, the decay
constant fBq and the QCD duality threshold s0; the last
one appears in the upper integration limit and also in the
coefficients of the polynomial P (s). Therefore, we can use
both sum rules to determine fBq as well as s0. To employ
a couple of sum rules in order to fix the QCD duality
threshold (s0) is a usual procedure [2, 4], but, as we will
see, with our method we have the additional advantage
that the value obtained for s0 is very stable, in the sense
that any change of this value would not affect appreciably
the result of the decay constant fBq .

3 Results

In the calculation of fB we take mq = 0 in the factor
(Mb + mq)2 of the correlation function, and in the low
integration limit of (4), whereas for fBs we keep the strange
quark mass different from zero although its contribution
turns out to be negligible.

The experimental input is as follows. For q being the
light quarks q = u, d we have the physical threshold sph.,
at the squared mass of the lowest lying resonance in the
bq channel:

sph. = M2
B = 5.2792 GeV2 . (12)

The continuum threshold scont. is taken at the Bππ inter-
mediate state, in an I = 1

2 s-wave, i.e.

scont. = (MB + 2mπ)2 = 30.90 GeV2 . (13)

1 The results obtained with higher moments are compatible
with the ones found here. However they are less stable with
the duality parameter s0 and, hence, less accurate.
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For the strange s quark we take

sph. = M2
Bs

= 5.3692 GeV2 ,

scont. = (MBs
+ 2mπ)2 = 31.92 GeV2 . (14)

On the theoretical side of the sum rule the input we
take is as follows. The strong coupling constant is taken at
the scale of the electroweak Z boson mass [17]

αs(MZ) = 0.118 ± 0.003 (15)

and run down to the computation scale using the four-
loop formulas of [16]. The values, with the corresponding
error bars, for the quark and gluon condensates (see for
example [4]) and the mass of the strange quark [18] are

〈qq〉(2 GeV) = (−267 ± 17 MeV)3 ,〈 αs

π
G G

〉
= 0.024 ± 0.012 GeV ,

〈qσGq〉 = m2
0 〈qq〉 (

with m2
0 = 0.8 ± 0.2 GeV

)
,

〈ss〉 = (0.8 ± 0.3)〈qq〉 ,

ms (2 GeV) = 120 ± 50 MeV . (16)

We also need to fix the renormalization scale µ in (5) and
(6). For definiteness we take µ = Mb(Mb), although in order
to find the stability of the results under the renormalization
scale we will study its variation for values of this scale in
a range appropriate for our discussion, namely, (Λ2

QCD �
µ2 < s0).

Finally for the bottom quark, the value Mb ≈ 4.20 GeV
is nowadays generally accepted. We take the result of [15]
which has also been obtained with the sum rule method
described here: Mb(Mb) = 4.19 ± 0.05 GeV.

Now, we proceed in the way described before. Firstly,
we compute fB as a function of s0 with the two different
sum rules (2), for i = 0, 1. Then, we fix s0 at the value
where both sum rules give the same result for fB . With
this usual procedure, and for a second degree polynomial,
we find s0 = 48.5 MeV2 and fB = 185 MeV.

From the theoretical inputs quoted above the main
source of errors comes from the bottom mass which, in
the range given above, produces a variation in the decay
constant of ∓11 MeV. Other sources of errors are the quark
condensates2, which affect the result by ±4 MeV. Since the
decay constants are physical observables, the results should
be independent of the renormalization scale µ. However,
here we have used an approximation in the asymptotic
spectral function of QCD, taking only the two-loop or-
der (5) and (6). Therefore a residual dependence on the
renormalization scale is expected. In order to quantify the
uncertainty of fixing the scale at the bottom mass, we vary
the scale in the range µ ∈ [3, 6] GeV, introducing an un-
certainty of ±18 MeV in the result. This dependence in the

2 As for the contribution of the condensates, the only relevant
comes from the lowest dimension one which gives an 8% of the
total result. The higher dimension terms considered here do
not give a sizeble contribution giving a hint on the convergence
of the condensate series in this approach.

Fig. 1. Decay constant fB as a function of the integration radius
s0 for Mb(Mb) = 4.19 GeV. With a second degree polynomial
in the sum rule (2), the dashed line represents the case i = 1
and the solid line the case i = 0

renormalization scale is expected to lower down if higher
orders in the coupling constant in (5) and (6) are taken
into account.

Adding quadratically all these errors, we finally quote
the following result for the decay constant of the light
meson B:

fB = 185 ± 22 MeV . (17)

Notice in Fig. 1 that with i = 1 (dashed line) and a sec-
ond degree polynomial there is a stable value (minimum),
fB = 183 MeV, at s0 = 44 GeV2. But for i = 0 (solid line)
the result fB = 180 MeV is a stable value (inflexion point)
which is practically constant around s0 = 60 GeV2. How-
ever, to compare with other results from QCD sum rules,
we take the crossing point of Fig. 1 as our final result. The
stable results of both curves are completely compatible
within error bars in such a way that we could have con-
sidered the value for fB in the wide range of the stability
region of s0.

Proceeding in the same fashion for the Bs meson, with
the only change given by the non-zero mass of the light s
quark, we find the decay constant fBs . In this case, as can
be appreciated in Fig. 2, the s0 value where the two sum
rules give the same result for fBs is s0 = 49.6 GeV2.

The result for the intersection point is

fBs = 202 ± 24 MeV , (18)

where a similar analysis of errors has been considered.
The only new ingredient is the uncertainty coming from
the strange quark mass, which contribution turns out to
be negligible.

Of special interest is the ratio of the decay constants
fBs and fB , which should be 1 in the chiral limit. We find

fBs

fB
= 1.09 ± 0.01 . (19)

We are free to remark that in the calculation of this
ratio, the uncertainties of the theoretical parameters are
correlated; this is why the final error becomes very small.
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Fig. 2. Decay constant fBs as a function of the integration
radius s0 for Mb(Mb) = 4.19 GeV. With a second degree poly-
nomial in the sum rule (2), the dashed line represents the case
i = 1 and the solid line the case i = 0

4 Conclusions

In this note we have computed the decay constant of Bq-
mesons for q either the strange s or the u or d massless
quarks. We have used a suitable combination of moments
of QCD finite energy sum rules in order to minimize the
shortcomings of the available experimental data. On the
theoretical side of the sum rule, we have used the pseu-
doscalar two point function calculated up to two-loop in
perturbative QCD and condensates up to dimension six in
the non-perturbative QCD expansion. Instead of the com-
monly adopted pole mass of the bottom quark, we used the
running mass to get a good convergence of the perturbative
series. We have a good control of the results against the
duality threshold s0, which turn out to be very stable.

The results found, taking the running mass of the bot-
tom quark Mb(Mb) = 4.19 ± 0.05 GeV, are given in (17)
and (18), and we collect them here for convenience:

fB = 185 ± 22 MeV , fBs
= 202 ± 24 MeV ,

where the error bars come from the uncertainty in the the-
oretical parameters (16) as well as the residual dependence
on the renormalization scale. We notice that the results are
very sensitive to the value of the running mass, giving most
of the theoretical uncertainty. On the other hand they turn
out to be quite stable against the variations of the other
input parameters, in particular the integration radius s0.

In this treatment we could not include the three-loop
corrections in the two point correlation function, since the
complete analytical QCD expression along the cut is not
known. Despite this lack of information, one can interpolate
the three-loop low energy QCD calculations with the high
energy ones [4,10]. The results do not differ much from the
exact two-loop calculation. Another possibility is to include
the three-loop high energy expansion along the integration
circle |s| = s0 which is known to a certain accuracy. We
have also performed this calculation somewhere else, having
results very close to the ones found here.

Within the error bars, our results agree with other re-
sults in the literature, obtained with different sum rule
methods and with lattice computations [2,4–6,8,9]. How-
ever, we advocate values of the decay constants in the
lower band.
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